次世代先端デバイス動向(5)強相関電子系デバイス(2019年8月調査)
※紙媒体で資料をご利用される場合は、書籍版とのセット購入をご検討ください。書籍版が無い【PDF商品のみ】取り扱いの調査資料もございますので、何卒ご了承ください。
調査資料詳細データ
本調査レポートは、定期刊行物 Yano E plus 2019年9月号 に掲載されたものです。
1.強相関電子系物質とは
2.強相関電子系の理論
2-1.金属と半導体
2-2.クーロン力
3.強相関電子系でデバイスをつくる
4.強相関電子系デバイスの応用可能性
4-1.トランジスター
4-2.メモリー
4-3.熱電変換デバイス
4-4.その他のデバイス
5.強相関電子系デバイスの市場規模予測
【図・表1.強相関電子系デバイスの国内およびWW市場規模予測
(金額:2020-2040年予測)】
【図・表2.強相関電子系デバイスのタイプ別WW市場規模予測
(金額:2020-2040年予測)】
6.強相関電子系デバイスに関連する企業・研究機関の取組動向
6-1.国立大学法人大阪大学
【図1.VO2ナノ構造体単相ドメインの相転移制御】
(1)金属/絶縁体電子相の電子状態の解明
【図2.Spring-8における光電子分光法による電子状態解明】
(2)電子相配列制御とVO2ナノ微細加工技術の確立
【図3.ナノインプリントナノ微細化法による
一括大面積VO2ナノ構造体作製】
(3)強相関電子相転移を利用した新規デバイスの創製
【図4.単一電子相ドメインの電気制御と
新規強相関電子相デバイス創製】
6-2.大学共同利用機関法人高エネルギー加速器研究機構(KEK)
(1)量子ビームを用いた多自由度強相関物質における
動的交差相関物性の解明
(2)分子システムにおける物性制御
(3)強相関酸化物超構造を用いた新奇量子状態の観測と制御
6-3.大学共同利用機関法人自然科学研究機構分子科学研究所
【図5.(A)Mott-FETの断面図。
(B)有機Mott絶縁体(厚み約500 nm)を用いた
ホールバーデバイスの光学顕微鏡像。
スケールは100μm。(C)κ-Brの表面AFM像】
6-4.国立大学法人東京大学
【図6.Sr2RuO4超伝導薄膜形成に用いたMBE装置の模式図】
【図7.Sr2RuO4超伝導薄膜形成に用いたMBE装置の実物写真】
6-5.国立大学法人東北大学
(1)強相関酸化物量子井戸構造を用いた新奇量子化状態の創成
【図8.強相関酸化物量子井戸構造を用いた
新奇量子化状態の創成のイメージ】
(2)酸化物ヘテロ構造を用いた新機能の開発
【図9.酸化物ヘテロ構造を用いた新機能の開発のイメージ】
(3)酸化物ナノキャパシター構造を用いたグリーンメモリーの開発
【図10.酸化物ナノキャパシター構造を用いた
グリーンメモリーの開発のイメージ】
6-6.学校法人日本大学
【図11.従来の強誘電体と電子型強誘電体の電気分極模式図】
【図12.電子型強誘電体希土類フェライトRFe2O4の結晶構造】
【図13.電気測定用装置】
6-7.国立研究開発法人物質・材料研究機構(NIMS)
(1)新規イリジウム酸化物Ba2IrO4における
Jeff = 1/2スピン軌道Mott状態の発見
(2)空間反転対称性の破れた新規超伝導体SrAuSi3の発見
(3)新規マルチフェロイクス物質RMnO3
6-8.国立大学法人横浜国立大学
【図14.スピンが無秩序ながらも強い相関を保った量子スピン液体】
【図15.塩化ルテニウム結晶にみられる量子スピン液体】
6-9.国立研究開発法人理化学研究所
6-10.学校法人早稲田大学
【図16.磁気スキルミオンを発現するB20化合物の構造】
【図17.スキルミオンがトポロジカルに保護された安定性を
持っていることを示す模式図】
【図18.スキルミオンレーストラックメモリーの模式図】
【図19.スキルミオンMRAMの模式図】
7.強相関電子系デバイスの将来展望
このレポートの関連情報やさらに詳しい情報についての調査を検討したい
矢野経済研究所では、
個別のクライアント様からの調査も承っております
マーケティングや経営課題の抽出、リサーチの企画設計・実施、調査結果に基づく具体的な戦略立案・実行支援に至るまで、課題解決に向けた全ての段階において、クライアント企業をトータルでサポート致します。