定期刊行物

Yano E plus

Yano E plus

エレクトロニクスを中心に、産業の川上から川下まで、すなわち素材・部材から部品・モジュール、機械・製造装置、アプリケーションに至るまで、成長製品、注目製品の最新市場動向、ならびに注目企業や参入企業の事業動向を多角的かつタイムリーにレポートいたします。

発刊要領

  • 資料体裁:B5判約100~130ページ
  • 発刊頻度:月1回発刊(年12回)
  • 販売価格:97,142円(税別)(1ヵ年)

※消費税につきましては、法令の改正に則り、適正な税額を申し受けいたします。

定期購読者(年間購読者)へのPDF閲覧サービス

定期購読者の方々にはYano E plusのHP上で『Yano E plus』のPDF閲覧サービスを受けられます。
PDF閲覧を行うには、「パスワード」を入力する必要があります。パスワードにつきましては、毎号 『Yano E plus』 に同封してお送りいたします。PDF閲覧サービス期間は発刊後、約3ヶ月となります。

年間購読をお申し込みの方へバックナンバー2冊無料プレゼント

年間購読をお申し込みいただきました方に、ご希望のバックナンバー(2008年4月号以降)を2ヶ月分サービスさせていただいております。なお、冊子(紙ベース)の在庫がなくなった場合、PDFでのサービスとさせて頂きます。ご希望がない場合、2008年4月号以降から2ヶ月分お送りさせて頂きます。

Yano E plus に対するご意見

『Yano E plus』へのご意見・ご要望をお聞かせ下さい。
「ご意見」欄に、ご関心のあるテーマ、『Yano E plus』に掲載して欲しいテーマ等、ご記入をお願いいたします。
例)半導体の製造装置(ステッパ市場)に興味がある、ナノインプリント市場がどの程度の市場規模があるのか知りたい、車載向けコネクタ市場の参入メーカを調べたい、等。
ご入力頂きました情報は、テーマ企画策定以外の目的には使用いたしません。
皆様の幅広いご意見・ご要望を頂戴し、誌面の充実に努めてまいります。

最新号

Yano E plus 2019年7月号(No.136)

 内容目次 

《次世代電池シリーズ》
●次世代電池シリーズ(8)Li-S電池の動向~市場編~ (3~21ページ)
~LIBにも使える高容量硫黄系電極材や電解質で大きな成果、
 小型の高性能リチウム硫黄電池は早期の実用化も~

1.はじめに
1-1.容量密度は革新型電池でトップクラス
(1)硫黄系電池はNa-S電池が先行
【図1.工業用硫黄製品(左:塊状硫黄、中:小塊硫黄、右:硫黄末)】
(2)硫黄系正極材の容量はLIBの約10倍
1-2.Li-S電池の電極反応と改良課題
(1)特有の電極反応で容量が拡大
【表1.リチウムイオン電池とLi-S電池の電極反応】
(2)レドックスシャトルが大問題
【図3.Li-Sの原理図(左)と有機電解液中の正極S8硫黄の反応(右)】
【表2.Li-S電池の利点と改良課題】
1-3.主要部材の開発動向
(1)有機硫黄系正極の開発成果
①硫黄・炭素(S-C)複合体正極材
②ポリ硫化炭素正極材
【表3.ポリ硫化炭素正極((CS)n)と他の正極材の特性比較(試作LIB)】
③硫黄変性ポリアクリルニトリル正極材
【図4.「SPAN」(エスパン)の外観・電顕像(左)と主な特長】
④タイヤ成分由来有機硫黄系正極材
【図5.廃タイヤ(硫黄含有ゴム)から電極材に至る流れ】
(2)無機硫黄系正極の開発成果
①金属多硫化物正極材
【図6.VS4(金属多硫化物)正極の8Ah級セル(左)とその充放電曲線】
②硫化リチウム系固溶体正極材
【図7.Li2Sベース固溶体と全固体化による溶出防止】
【図8.Li2Sベース固溶体正極の全固体電池と液系Li-S電池のサイクル特性】
(3)電解質の開発成果
①有機電解液と固体電解質
②溶媒和イオン液体電解液
【図9.溶媒和イオン液体の構造と燃焼試験、多硫化リチウムの溶解度(右)】
(4)セパレータの開発成果
【図10.MOF(金属有機構造体)によるLi-S電池用セパレータ】
1-4.高エネルギー密度化と低コスト化
【図・表1.Li-S電池の電極容量の現状と見通し(JST-LCSの評価シナリオ)
(数量:現状-2030年予測)】
【図・表2.Li-S電池とLIBのエネルギー密度の比較(数量:現状、2030年予測)】
【図・表3.Li-S電池とLIBの製造コストの比較(金額:現状、2030年予測)】

《次世代市場トレンド》
●次世代先端デバイス動向(3)超格子デバイス (22~45ページ)
~原子の種類の選択や積層厚さの加減等により、そのバンド構造を
 比較的自由に制御可能、デバイスへの応用が期待されている!~

1.超格子とは
2.超格子構造の種類
2-1.半導体超格子
2-2.磁性超格子
3.超格子デバイスとは
4.超格子デバイスの応用事例
4-1.量子井戸レーザー
4-2.太陽電池
5.超格子デバイスの市場規模予測
【図・表1.超格子デバイスの国内およびWW市場規模予測(金額:2020-2040年予測)】
【図・表2.超格子デバイスの応用分野別WW市場規模予測(金額:2020-2040年予測)】
6.超格子デバイスに関連する企業・研究機関の取組動向
6-1.国立研究開発法人産業技術総合研究所(産総研)
【図1.GeTeとSb2Te3薄膜によって構成される超格子構造】
6-2.学校法人上智大学
6-3.国立大学法人東京工業大学
(1)スパッタ法を用いた磁性薄膜および磁気記録技術に関する研究
(2)超格子を利用して新しい電子機能材料とデバイスを作製する
6-4.国立大学法人東京大学
【図2.ペロブスカト太陽電池の典型的な断面構造】
【図3.ペロブスカト太陽電池CH3NH4PBI3薄膜の冷却過程で生じた正方晶(T)と立方晶(C)の混在状態】
【図4.CH3NH4PBI3薄膜の(a)TEM像、(b)電子線回折像、(c)フーリエ変換像】
6-5.国立大学法人東北大学
【図5.NITE法によるFeNi超格子の合成スキーム】
6-6.国立研究開発法人物質・材料研究機構(NIMS)
6-7.国立大学法人北海道大学
【図6.R-SPE法によるInGaO3(ZnO)m単結晶薄膜の作製プロセスとTEM像】
【図7.(a)人工超格子の熱電変換の模式図 (b)大きく広がった電子を狭い空間に閉じ込めることで
より大きな熱電能増強が起こることを示す理論】
6-8.国立大学法人横浜国立大学
【図8.QD超格子太陽電池の概念図】
【図9.Si基板上に作製した多数の逆ピラミッド孔のSEM写真】
【図10.逆ピラミッド孔テンプレートによるQD超格子形成の模式図】
【図11.(a)ファセット付きQDのTEM像、(b)QD形状とキャリア移動のし易さの関係の模式図】
6-9.国立研究開発法人理化学研究所
7.超格子デバイスの将来展望

●CASEの市場動向(3):Autonomous (46~56ページ)
~「レベル2+、レベル3-」や運転の遠隔操作の需要が増加?~

1.自動運転の現状と課題
1-1.自動運転の現状
1-2.自動運転とスマートシティ
1-3.レベル2+(プラス)、レベル3-(マイナス)と遠隔操作
(1)課題
2.新たな動き
2-1.レベル2+、レベル3-
2-2.遠隔操作
2-3.物流における自動運転
3.国内の状況と課題
3-1.国内の自動運転の現状
【表1.国内のAutonomous参入企業と研究・開発・事業の概要】
3-2.注目される事例
(1)自動運転プラットフォーム(ティアフォー)
(2)宅配ロボット(ZMP)
3-3.課題
4.自動運転市場の動向
4-1.市場動向と市場規模
【図1.国内のAutonomous市場の各分野の推移予測(2017-2035年度予測)】
【図・表1.国内のAutonomous市場の推移予測(数量:2017-2022年予測)】

《注目市場フォーカス》
●シングルボードコンピューターと応用展開 (57~84ページ)
~組込みWebサーバーを始め、高精細画像処理や
 産業用制御システムなど、IoTの必須アイテムに!~

1.シングルボードコンピューターとは
2.代表的なSBCとその特徴
2-1.Raspberry Pi
2-2.Arduino
2-3.mbed
2-4.Tessel
2-5.Electron
2-6.BeagleBone
2-7.ATOMIC Pi
2-8.SPRITZER
3.SBCのIoT活用イメージ
4.SBCの市場規模推移と予測
【図・表1.SBCの国内およびWW市場規模推移と予測(金額:2017-2022年予測)】
【図・表2.SBCの需要分野別WW市場規模推移と予測(金額:2017-2022年予測)】
5.SBCの市場シェア
【図・表3.SBCのWW市場における企業シェア(金額:2018年)】
6.SBCを用いた応用展開をしている企業の取組動向
6-1.アスメック株式会社
【図1.LattePanda Alpha仮パッケージ】
6-2.株式会社アドテック
【図2.ArmベースセミカスタムSBCの例】
【図3.アドテックのセミカスタムボード】
【図4.SIMと通信モジュールを搭載した事例】
6-3.株式会社XSHELL
【図5.導線解析エッジAIカメラ・ハードウェア】
【図6.導線解析エッジAIカメラ・解析結果】
6-4.ザイリンクス株式会社(Xilinx)
【図7.Virtex® UltraScale+™ XCVU29P-L2FSGA2577EES9818 FPGA評価キット】
【図8.Virtex® UltraScale+™ XCVU37P-L2FSVH2892E FPGA 評価キット】
6-5.ジャスミー株式会社
【図9.ジャスミーが提供するデバイスの例(左)LTE-Single Board Computer (右)LTE-Wearable】
【図10.SKCとSGのコンセプト概略図】
6-6.NEUSOFT Japan株式会社(NEUSOFT)
(1)利便性向上
(2)オープンプラットフォームの構築
(3)IoT教育教材として最適
6-7.ポジティブワン株式会社
6-8.メカトラックス株式会社
【図11.Raspberry Pi周辺機器の代表例】
【図12.Raspberry Pi用電源管理/死活監視モジュール「slee-Pi(スリーピー)」】
【図13.Raspberry Pi専用高精度A/D変換モジュール「ADPi(エーディーパイ)」】
7.IoT開発に欠かせないSBC

《タイムリーコンパクトレポート》
●金属粉末射出成形(MIM)市場 (85~91ページ)
 ~SIPが先導、実用化ステージへ、用途拡大が進み勝機到来~

1.市場概況
2.セグメント別動向
2-1.多岐に渡る用途分野が国内市場の特徴
(1)情報通信機器
(2)産業機械・機器
(3)医療機器
(4)自動車・二輪車部品
(5)ミシン部品
(6)時計部品分野
(7)その他
3.注目トピック
3-1.参入各社の設備投資意欲は旺盛
3-2.SIP先導で航空機部品への適用へ
3-3.市場拡大とともに主要メーカーシェアは低下
3-4.製法認知に向けた取り組みが続く
4.将来展望
【図1.国内金属粉末射出成形(MIM)市場規模推移と予測(金額:2015年-2025年度予測)】
【図2.2025年度国内金属粉末射出成形市場メーカーシェア予測(上位3社)(金額:2025年度予測)】

《あとがき》
読者アンケート「興味を持ったレポート」トップ3 予想 (92ページ)

関連マーケットレポート