定期刊行物

Yano E plus

Yano E plus

エレクトロニクスを中心に、産業の川上から川下まで、すなわち素材・部材から部品・モジュール、機械・製造装置、アプリケーションに至るまで、成長製品、注目製品の最新市場動向、ならびに注目企業や参入企業の事業動向を多角的かつタイムリーにレポート。

発刊要領

  • 資料体裁:B5判約100~130ページ
  • 商品形態:冊子
  • 発刊頻度:月1回発刊(年12回)
  • 販売価格(1ヵ年):106,857円(税込) 本体価格 97,142円

※消費税につきましては、法令の改正に則り、適正な税額を申し受けいたします。

年間購読をお申し込みの方へバックナンバー2冊無料プレゼント

年間購読をお申し込みいただきました方に、ご希望のバックナンバー(2008年4月号以降)を2ヶ月分サービスさせていただいております。なお、冊子(紙ベース)の在庫がなくなった場合、PDFでのサービスとさせて頂きます。ご希望がない場合、2008年4月号以降から2ヶ月分お送りさせて頂きます。

Yano E plus に対するご意見

『Yano E plus』へのご意見・ご要望をお聞かせ下さい。
「ご意見」欄に、ご関心のあるテーマ、『Yano E plus』に掲載して欲しいテーマ等、ご記入をお願いいたします。
例)半導体の製造装置(ステッパ市場)に興味がある、ナノインプリント市場がどの程度の市場規模があるのか知りたい、車載向けコネクタ市場の参入メーカを調べたい、等。
ご入力頂きました情報は、テーマ企画策定以外の目的には使用いたしません。
皆様の幅広いご意見・ご要望を頂戴し、誌面の充実に努めてまいります。

最新号

Yano E plus 2020年4月号(No.145)

 内容目次 

≪EMC・ノイズ対策シリーズ≫
EMC・ノイズ対策シリーズ(6) フィルタリングデバイスの最新動向 (3~40ページ)
~5G関連製品の登場や自動車の電装化率の急速な向上、EV/PHVの増加で新規需要が発生し、一部のデバイスは今後も高成長が続く~

1.はじめに
1-1.伝導ノイズのタイプと効果的な対策
【表1.放射ノイズと伝導ノイズの特徴と対策】
1-2.フィルタリングデバイスの特長
2.コンデンサの注目機能とEMC対策
2-1.主要コンデンサの特徴
【表2.コンデンサの主要機能とその利用形態】
(1)セラミックコンデンサ
(2)アルミ電解コンデンサ
(3)フィルムコンデンサ
(4)タンタルコンデンサ
【表3.コンデンサの静電容量の比較】
2-1.コンデンサによるノイズ対策
(1)カップリング
(2)デカップリング
(3)ノイズフィルタ
①ACラインフィルタ
②LC形 / RC形フィルタ
③RCスナバ回路
(4)平滑処理
【表4.コンデンサの主なノイズ除去機能と平滑機能の特徴】
3.コイル/インダクタ、抵抗器のノイズ抑制機能
3-1.コイル/インダクタの種類と特徴
(1) コンデンサの逆の働き
(2)巻線型・積層型・薄膜型の特徴
【図1.各種インダクタSMD型の主要タイプ(イメージ)】
(3)コモンモードチョークとフェライトビーズ
【図2.産機用と車載用コモンモードチョークの事例とその構造(右)】
3-2.コイル/インダクタによるノイズ対策
(1)電源ラインの対策
【図3.パワーインダクタの種類と構造】
(2)信号ラインの対策
【表5.コイル/インダクタの主な機能・用途による分類】
3-3.抵抗器によるノイズ抑制
4.複合ノイズフィルタの特長
4-1.ローパスフィルタを高性能化
4-2.基板実装型とインレット型・BOX型
【図4.産業機器用BOX型複合ノイズフィルタの事例】
5.フィルタリングデバイスの市場概況
5-1.EMC・ノイズ対策製品の総市場規模
【表6.EMC用シールディング材とフィルタリングデバイスの市場規模比率(金額ベース:2019年)】
【表7.EMC用フィルタリング材のWW市場規模内訳(金額:2019年)】
5-2.コンデンサによるノイズ対策の市場規模
(1)主要コンデンサの市場概況
【表8.主要コンデンサの種類別WW市場規模予測(金額:2019-2023年予測)】
【図・表1.MLCCのWW市場規模推移(金額:2018-2023年予測)】
【図.表2.MLCCのWW市場メーカーシェア(金額:2019年)】
【表9.主要コンデンサの種類別/利用分野別WW市場規模(金額:2019年)】
【表10.主要コンデンサの種類別WWメーカーシェア(金額:2019年)】
(2)ノイズ除去用コンデンサの市場規模
【表11.主要用コンデンサの注目機能別WW市場規模(金額:2019年)】
【表12.ノイズフィルタ用コンデンサのWW市場規模(金額:2019年)】
5-3.コイル/インダクタによるノイズ対策の市場規模
(1)主要コイル/インダクタの市場概況
【図・表3.コイル/インダクタのWW市場規模推移・予測(金額:(2018-2023年予測)】
【表13.コイル/インダクタのWWメーカーシェアと主な利用分野シェア(金額:2019年)】
【表14.電源系コイル/インダクタとメタル系のWW市場規模区分大別(金額:2019年)】
(2)ノイズ除去用コイル/インダクタの市場規模
【表15.ノイズ除去用コイル/インダクタの種類別・使用場所別市場規模(金額:2019年)】
5-4.複合ノイズフィルタの市場動向
【表16.複合ノイズフィルタのWW市場規模予測(金額:2019-2023年予測)】
【図・表4.複合ノイズフィルタWW市場規模のタイプ別構成比(金額:2019年)】
6.注目メーカーの最新動向
6-1.コンデンサ関連注目企業
(1)株式会社指月電機製作所
【図5.指月電機製作所と関連企業の製品(主要分野の製品例と注目新製品】
(2)太陽誘電株式会社
【図6.太陽誘電の最先端MLCCの事例】
(3)日本ケミコン株式会社
【図7.日本ケミコンのアルミ電解コンデンサの新製品の事例】
(4)日精電機株式会社
【図8.日精電機のフィルムコンデンサ注目製品(事例)】
(5)株式会社村田製作所
【図9.車載用MLCCの製品例(左)と周波数特化型ノイズフィルタ(中)】
6-2.コイル/インダクタ、複合フィルタ関連注目企業
(1)サガミエレク株式会社
【図10.サガミエレクのコイル関連製品の事例】
(2)スミダコーポレーション株式会社
【図11.スミダコーポレーションの代表的製品と新製品事例】
(3)東大無線株式会社
【図12.東大無線のコイル・トランス製品の事例】
(4)シャフナーグループ / シャフナーEMC株式会社
【図13.外付用ノイズフィルタの代表的形状】
【図14.シャフナー / EMC関連の新製品(事例)】

≪注目市場フォーカス≫
次世代高機能材料の動向(2) ~光機能材料~ (41~83ページ)
~光電変換、光センシング、フィルタリング、光誘起化学反応など特異な機能を活かして、次世代高機能材料の花形として注目されている~

1.次世代光機能材料とは
2.次世代光機能材料の開発動向
3.注目される次世代光機能材料
3-1.シリコン
3-2.蛍光材料
3-3.光記録材料
3-4.メタマテリアル
3-5.フォトニック結晶
3-6.光触媒
3-7.ペロブスカイト太陽電池
4.次世代光機能材料の市場規模予測
【図・表1.次世代光機能材料の国内およびWW市場規模予測(金額:2020-2040年予測】
5.次世代光機能材料に関連する企業・研究機関の取組動向
5-1.国立大学法人茨城大学
【図1.開発したラダー型構造を持つ2種類のドナー・アクセプター型分子】
【図2.(a)ラダー型TADF 発光体を使った有機EL 素子の発光スペクトルと(b)輝度-EQE曲線とEL素子からの発光の様子】
5-2.国立大学法人宇都宮大学
(1)精密無機合成を基盤とする光機能材料・環境機能材料の創成
(1)-1.光触媒材料
(1)-2.高屈折材料
(1)-3.紫外線遮蔽材料
(2)成長次元を制御する独自の酸化物合成手法
5-3.国立大学法人愛媛大学
(1)鉛フリー・ゼロ/低光弾性ガラス材料の新規開発
【図3.鉛フリー・ゼロ光弾性・透明リン酸塩ガラス】
【図4.ZnO、SnOを含んだ無色透明のゼロ光弾性ZnO-SnO-P2O5ガラス】
(2)低光弾性(低複屈折性)ガラスのフォトニクス応用
【図5.低複屈折性(低光弾性)レンズ・フィルターが配置された偏光プロジェクター内の光学系】
(3)光弾性定数の高精度測定
【図6.レーザーヘテロダイン法を用いた円盤状ガラスの光弾性定数の高精度測定】
5-4.国立大学法人大阪大学
(1)生体機能解明に必要な光スイッチング機能を有するハイブリッドナノ粒子と観察技術の開発
(2)ブロードバンド光応答性ハイブリッド型光触媒の開発
5-5.国立大学法人九州大学
(1)π電子系化合物を用いた光電変換/クリーンエネルギー技術
(2)高効率発光機能を有するπ電子系化合物と有機ELデバイス
5-6.学校法人慶応義塾大学
(1)高輝度光散乱導光ポリマー
5-7.国立大学法人佐賀大学
(1)有機-無機層状ペロブスカイト量子井戸材料を用いたフォトニクス材料の開発
【図7.有機・無機層状ペロブスカイト化合物の構造】
【図8.機能性発色団を導入した有機-無機層状ペロブスカイト量子井戸】
5-8.学校法人上智大学
【図9.ペロブスカイト層の水平配向(左)と垂直配向(右)】
【図10.(a)有機層にカルボキシ基を導入したペロブスカイト化合物 (b)薄膜断面の電子顕微鏡像】
5-9. 国立大学法人東京大学
【図11.様々な形状のナノ粒子】
【図12.つかまえた光エネルギーのゆくえ】
【図13.半透明太陽電池の概念図】
【図14.光ナノ加工の事例】
5-10. 国立大学法人東京農工大学
(1)分子集合体ナノワイヤと金微粒子からなるネットワーク構造の作製と電気物性評価
(2)水素結合制御によるゲルの作製と評価
(3)ドナー・アクセプター分子を置換したブタジイン誘導体の合成と電気物性評価
5-11.国立大学法人東北大学
(1)ガラスから光波制御デバイスをつくる
【図15.結晶とガラスの構造の違いを模式的に示した図】
【図16.線形光学効果と非線形光学効果の違いを模式的に示した図】
5-12.国立大学法人長岡技術科学大学
(1)レーザーによるガラスの位置選択的結晶化プロセスの開発とデバイスへの展開
【図17.レーザーによってガラス表面に形成されたマイクロパターン】
【図18.ガラス表面に作製したLiNbO3結晶の2次元パターン】
(2)高機能結晶化ガラスの開発
【図19.非線形光学特性を持つ結晶化ガラス】
(3)ケミカルプロセスによるガラスの形態制御技術
【図20.強誘電体ナノ結晶からなるファイバープローブ、およびガラス基板上に形成したマイクロ凹溝構造体】
5-13.学校法人日本大学
(1)有機色素分子を用いた光/電気エネルギー変換素子の高効率化
【図21.Agナノアレイ構造の光閉じ込め効果による光電流増幅の模式図】
【図22.Cuナノ材料の光閉じ込め効果による光電流増幅の事例】
(2)FeS2半導体ナノ結晶自身の光閉じ込め機能
【図23.合成したFeS2ナノ結晶の光閉じ込め効果と近赤外域での光吸収増幅】
5-14.国立研究開発法人物質・材料研究機構(NIMS)
【図24.光照射による電流-熱流変換の制御】
【図25.円偏向を照射することでデザインした温度変化パターンの例(a)光誘起磁化反転現象でデザインした磁化分布の模式図 (b)Co/Pt多層膜における異常エッチングスハウゼン効果の観測例 (c)直線偏光照射による温度変化のON/OFF制御】
6.次世代光機能材料の将来展望

次世代ストレージインフラの最新動向 (84~124ページ)
~今後、ビッグデータ活用やAI進化が進むなかで、爆発的に増えるストレージ需要に応えるため変革が欠かせない~

1.戦国時代のストレージインフラ
2.次世代ストレージインフラへの期待
3.注目される次世代ストレージインフラ
3-1.オールフラッシュストレージ(AFS)
3-2.ソフトウェア定義ストレージ(SDS)
3-3.ハイパーコンバージドインフラ(HCI)
4.次世代ストレージインフラの市場規模予測
【図・表1.次世代ストレージインフラの国内およびWW市場規模推移と予測(金額:2018-2023年予測)】
【図・表2.次世代ストレージインフラのタイプ別国内市場規模推移と予測(金額:2018-2023年予測)】
5.次世代ストレージインフラの市場シェア
【図・表3.次世代ストレージインフラ全体(AFS+SDS+HCI)の国内市場における企業シェア(2019年)】
【図・表4.AFSの国内市場における企業シェア(2019年)】
【図・表5.SDSの国内市場における企業シェア(2019年)】
【図・表6.HCIの国内市場における企業シェア(2019年)】
6.次世代ストレージインフラに関連する企業・研究機関の取組動向
6-1.SCSK株式会社
(1)AFS:Dell EMC「Isilon」
【図1.「Isilon」導入事例(徳島大学病院)】
(2)SDS:INFINIDAT「InfiniBox®」
【図2.「InfiniBox®」を活用した事例(BIGLOBE)】
(3)HCI:HPE「SimpliVity」
【図3.「SimpliVity」の導入事例(ベルーナ)】
6-2.株式会社データダイレクト・ネットワークス・ジャパン(DDNジャパン)
【図4.仮想化環境に最適な「Tintri EC6000™」のアーキテクチャ】
【図5.仮想化環境に最適な「Tintri EC6000™」のアーキテクチャ】
6-3.東京エレクトロン デバイス株式会社
【図6.アプリケーション高層化・ストレージ統合を実現する
【図7.アーキテクチャと保守プログラムに優れる「FlashArrayシリーズ」と
6-4.東京日産コンピュータシステム株式会社(TCS)
【図8.「FlashSystem」の特徴】
【図9.「FlashSystem」のシステム構成におけるSANスイッチやSVCなどのファイバーチャネルの回路構成】
6-5.日本IBM株式会社(IBM)
【図10.IBMの統合データサービス基盤の模式図】
(1)圧倒的な性能でビジネスを加速するフラッシュ
【図11.IBM独自技術DRAIDを用いた
(2)大量のデータ保管を可能にするテープ
【図12.データ階層化のメリット】
(3)柔軟なデータ基盤を実現するSDSとクラウド連携
【図13.IBMハイブリッド・マルチクラウドソリューションの概要】
【図14.他社のクラウドを含めたIBM「Spectrum」の活用】
(4)大きなメリットを引き出せるビッグデータ&AI
【図15.ビッグデータ&AIにおける非構造データ管理】
6-6.日本電気株式会社(NEC)
(1)AFS:「iStorage M」シリーズ
【図16.業務毎のI/O流量を制御し業務のSLAを実現する機能】
(2)HCI:「NEC Hyper Converged System」
【図17.「NEC Hyper Converged System」の外観(左)と専用管理ツール(右)】
6-7.日本ヒューレット・パッカード株式会社(HPE)
【図18.HPEの戦略を模式的に示した図】
(1)AFS:「HPE Primera」
(2)ハイブリッド:「HPE Nimble」
【図19.データの常時稼働、常時高速、自動化、およびオンデマンドの状態の維持を可能にする「HPE InfoSight」】
【図20.全製品に対し標準で99.9999%可用性を保証する「HPE Nimble」 】
(3)HCI:「SimpliVity」
【図21.中央集約型から分散メッシュ型に進化した「HPE SimpliVity」】
6-8.ネットアップ合同会社(NetApp)
(1)AFA(All Flash Array):「AFF C190」
【図22.「AFF C190」の外観】
(2)SDS
(3)HCI:「NetApp Hybrid Cloud Infrastracture」
【図23.「NetApp HCI」が実現するハイブリッドマルチクラウドエクスペリエンスの模式図】
【図24.既存のシステム(上)とデータドリブンなITを実現する「NetApp HCI」データファブリックのコンセプト(下)の比較】
6-9.株式会社日立製作所(日立)
【図25.「VSP 5000シリーズ」の新アーキテクチャ】
【図26.セキュリティー強化された「VSP 5000シリーズ」】
7.次世代ストレージインフラの課題

≪次世代市場トレンド≫
ダイナミックデータの利用動向(3) (125~136ページ)
~ダイナミックデータ市場の柱はV2XとADASなど車の制御系、25年頃は情報系(HMI、つぶやき)が活発化~

1.ダイナミックデータと新たなビジネスの可能性
1-1.ダイナミックデータの種類
(1)V2Xで取得した情報
(2)(地図)位置情報
(3)ADASで取得した情報
(4)HMIによる情報
①HUD
②電子ミラー(e-ミラー)
③室内向けカメラ(インカメラ)
④バイタルセンサー
⑤つぶやき(SNS)
2.車のダイナミックデータに関連した市場規模推計
【図・表1.車のダイナミックデータに関連する分野別国内市場規模推移と予測(金額:2020~2022年予測、2025年予測】

≪タイムリーレポート≫
「オートモーティブワールド2020」レポート (137~148ページ)
~コロナウイルス感染直前のAMワールドで感じたCASE対応動向~

1.全体
1-1.開催概要
【写真.ライブビデオ講演会場で実施された基調講演】
1-2.コロナウイルス感染拡大中も続いているCASE対応
2.各社の展示状況
2-1.CASE時代サバイバルのための企業再編
【写真.日本電産(Nidec)のアピールするカーエレクトロニクス部品】
【写真.ケーヒンのアピールするパワートレイン部品】
2-2.車載ソフトウェアでも進む企業提携・企業再編
【写真.VERISERVEのアピールするモビリティーサービス検証ビジネス】
【写真.マイクロソフトのアピールするMaaS発展に向けた支援策】
【写真.APTJのアピールするJulinar SPFサービス】
【写真.オーバスのアピールするJulinar SPFサービス】
3.専門技術セミナー
3-1.スマートシティ
3-2.車載HMI
3-3.自動運転カーによるシェアリングサービス
最後に